DZHK-SOP-K-06
Cardiac magnetic resonance imaging

Version: V1.0
Effective date: 01/09/2014

Replaces version: -
Dated: -

Change note: -

<table>
<thead>
<tr>
<th>Name</th>
<th>Technical author</th>
<th>Technical reviewer</th>
<th>Approval of Department Head</th>
<th>Approval DZHK</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Dösch (Mannheim)</td>
<td></td>
<td></td>
<td>Matthias Nauck</td>
<td>Thomas Eschenhagen</td>
</tr>
<tr>
<td>C. Liebetrau (Bad Nauheim)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Lotz (Göttingen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. Wachter (Göttingen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Schulz-Menger (Berlin)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>26/08/2014</th>
<th>26/08/2014</th>
<th>26/08/2014</th>
</tr>
</thead>
</table>

Signature

TABLE OF CONTENTS

1 Introduction... 3
 1.1 List of Abbreviations.. 3
 1.2 Objective ... 4
 1.3 Target group... 4
 1.3.1 Inclusion criteria ... 4
 1.3.2 Exclusion criteria .. 4
 1.4 Application and tasks ... 5
 1.5 Terms and definitions... 5
 1.6 Relationships to other examinations ... 5
 1.7 Quality level .. 5

2 Prerequisites of the examination .. 6
 2.1 Requirements regarding rooms/equipment .. 6
 2.2 Devices/hardware .. 6
 2.3 Special clinical consumables .. 6
 2.4 Essential documents .. 6
 2.5 Essential information .. 6
 2.6 Personnel ... 6

3 Implementation/workflow/work steps ... 7
 3.1 Flowchart of the procedure .. 7
 3.2 Preparing for the examination ... 8
 3.2.1 Preparing the workplace ... 8
 3.2.2 Preparing the devices .. 8
 3.2.3 Principles of preparing the subject for the examination 8
 3.3 Performing the examination ... 9
 3.4 Follow-up and data collection ... 12
 3.5 Procedure in case of deviations ... 12

4 Literature and references ... 13

5 Change ... 13

6 Persons involved .. 13

7 Annexes .. 14
 7.1 eCRF module .. 14
 7.2 List of Figures ... 16
1 INTRODUCTION

1.1 LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Plain text</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV grooves</td>
<td>Atrioventricular grooves</td>
</tr>
<tr>
<td>ECG/EKG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>LV mass/BSA</td>
<td>Indexed left ventricular mass</td>
</tr>
<tr>
<td>LVEDD</td>
<td>Left ventricular end-diastolic diameter</td>
</tr>
<tr>
<td>LV-EDVI</td>
<td>Left ventricular end-diastolic volume index</td>
</tr>
<tr>
<td>LV-EF</td>
<td>Left ventricular ejection fraction</td>
</tr>
<tr>
<td>LVESD</td>
<td>Left ventricular end-systolic diameter</td>
</tr>
<tr>
<td>LV-SVI</td>
<td>Left ventricular stroke volume index</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>RV-EDVI</td>
<td>Right ventricular end-diastolic volume index</td>
</tr>
<tr>
<td>RV-EF</td>
<td>Right ventricular ejection fraction</td>
</tr>
<tr>
<td>RV-ESVI</td>
<td>Right ventricular end-systolic volume index</td>
</tr>
<tr>
<td>RV-SVI</td>
<td>Right ventricular stroke volume index</td>
</tr>
</tbody>
</table>
1.2 **OBJECTIVE**

The aim of the modules presented in this SOP is to ensure comparability of the protocols across all locations. Due to technical advances, the SOPs are continually updated. Furthermore, the aim is to continuously expand the modules within the scope of the study-specific questions.

1.3 **TARGET GROUP**

The MRI SOPs shall apply to all DZHK studies that involve cardiac magnetic resonance imaging.

1.3.1 **Inclusion criteria**

The inclusion criteria are stipulated in the study protocol of the planned studies.

1.3.2 **Exclusion criteria**

Contraindications:

Pacemakers, defibrillators

- Neurostimulators
- Metal vascular clips
- Cochlear implants
- Ferromagnetic intravascular filters and shunts that were implanted less than 1 month ago
- Starr-Edwards prosthetic heart valves (old type of heart valve made of metal, implanted prior to 1970)
- Recently implanted ferromagnetic vascular clips
- Implanted permanent magnets (magnetic dentures)
- Implanted insulin or pain pumps
- Recently implanted joint replacement, magnetic resonance imaging is safe with titanium prostheses or joint replacements that were implanted a while ago
- Shrapnel
1.4 APPLICATION AND TASKS
Cardiac magnetic resonance imaging is a non-invasive standard procedure used in cardiac diagnostics.

1.5 TERMS AND DEFINITIONS
None

1.6 RELATIONSHIPS TO OTHER EXAMINATIONS
None

1.7 QUALITY LEVEL
This SOP corresponds to quality level 2.

<table>
<thead>
<tr>
<th>DZHK quality level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
</tr>
<tr>
<td>Level 1</td>
</tr>
<tr>
<td>Level 2</td>
</tr>
<tr>
<td>Level 3</td>
</tr>
</tbody>
</table>
2 PREREQUISITES OF THE EXAMINATION

Take into consideration all factors to ensure the examination.

2.1 REQUIREMENTS REGARDING ROOMS/EQUIPMENT
According to the provisions of the respective institutions for performing magnetic resonance imaging procedures.

2.2 DEVICES/HARDWARE
- ECG/EKG
- Ear protectors
- MRI/examination coil
- Contrast agent injector

2.3 SPECIAL CLINICAL CONSUMABLES
- Venous access

2.4 ESSENTIAL DOCUMENTS
Informed Consent Form (completed in full)
Check of laboratory values (e.g. creatinine or GFR)

2.5 ESSENTIAL INFORMATION
Review contraindications (implants, etc.)
e.g. date, patient ID, etc.

2.6 PERSONNEL
The prerequisites for implementing this SOP and involved personnel include:
- Medical technical assistants
- Physicians
3 IMPLEMENTATION/WORKFLOW/WORK STEPS

3.1 FLOWCHART OF THE PROCEDURE

Preparing the device
- ECG/EKG
- MRI/examination coil
- Contrast agent injector
- Ear protectors

Preparing the patient
- Inform the patient
- Remove foreign bodies
- Bare chest
- Venous access
- ECG placement
- Breathing commands

Performing the examination
Module left and right ventricular functional test
- 1. Localiser – transaxial, coronal, sagittal
- 2. Short axis scout
- 3. Alignment of 2-chamber, 3-chamber, 4-chamber view, short axis stack and right ventricular 2-chamber view

Performing the examination
Late gadolinium enhancement module
- Wait 10 minutes after injecting contrast agent
- Use study-specific contrast agent
- Position the TI-Scout in the mid-ventricular short axis
- Adopt plan of functional test

Review of contraindications
- Pacemakers, defibrillators
- Neurostimulators, metal vascular clips, cochlear implants, ferromagnetic intravascular filters and shunts that were implanted less than 1 month ago, Starr-Edwards prosthetic heart valves, recently implanted ferromagnetic vascular clips, implanted permanent magnets, implanted insulin or pain pumps, recently implanted joint replacements, shrapnel

Measurement
- 2-chamber view
- 4-chamber view
- 3-chamber view
- Short axis stack
- Right ventricular 2-chamber view

Key:
- Event/task
- Observation/statement
- Leads to/continues to
- Decision

Termination
3.2 PREPARING FOR THE EXAMINATION

- Check the Informed Consent Form
- Check the laboratory values (creatinine)
- Ask about height and weight

3.2.1 Preparing the workplace

None

3.2.2 Preparing the devices

- Position and insert the coil, prepare the positioning aids
- Prepare and connect the contrast agent injector

3.2.3 Principles of preparing the subject for the examination

- Inform the patient about the course of the examination
- Remove all foreign bodies (e.g. jewellery, ECG cables, etc.) and clothing (e.g. bra, zips, metal buttons, metal threads, etc.), and any dental prosthesis that interfere with the examination
- Ask the patient to strip down to the waist, surgical shirt (opening in front) or facility-internal clothing
- If necessary, prepare the venous access
- Place the ECG, additional monitoring depending on the planned examination
- Explain the breathing commands
- Apply ear protectors

Positioning the patient

- Supine position, head first
- Apply the cardiac coil or the manufacturer-specific surface coil
- Lay arms alongside the body
- Ear protectors
- Make the patient as comfortable as possible using positioning aids
- If necessary, connect the patient to the contrast agent injector
3.3 PERFORMING THE EXAMINATION

Module left and right ventricular functional test *

*prior to commencing every study, details are adjusted according to current knowledge, during each study the parameters are kept constant; furthermore, manufacturer-independent "generic" protocols are generated that define the details of the sequences.

1. Localiser in all 3 patient axes (transaxial, coronal, sagittal)

2. Short axis scout

3. Alignment and measurement of 2-chamber, 3-chamber, 4-chamber view, short axis stack, right ventricular 2-chamber view

Manual alignment is outlined below; however, automatic algorithms such as the three-point method can also be applied.
2-chamber view

The 2-chamber view is aligned on the axial localiser through the centre of the mitral valve and the tip of the left ventricle.

4-chamber view

The 4-chamber view is aligned on the short axis localiser and also using the 2-chamber view, whereby it must be ensured that the alignment runs through the tip of the 2-chamber view and verified on the short axis localiser that the left ventricular outflow tract is not included on the image.

3-chamber view

The 3-chamber view is aligned from the 4-chamber view and the short axis localiser. A cross-section through the left ventricular outflow tract is chosen on the short axis stack, whereby for the 4-chamber view it must be ensured that the cross-section runs through the apex of the heart.

The 3-chamber view is needed for assessing anteroseptal and inferolateral wall motion disorders. Furthermore, it can be used to determine the thickness of the basal anterior septum (basal septum) and of the inferior lateral wall (basal lateral wall). In addition, the left ventricular end-diastolic (LVEDD) and end-systolic (LVESD) diameter, the diameter of the left atrium and the diameter of the left ventricular outflow tract...
Cardiac magnetic resonance imaging

tract (LVOT) can be measured in the 3-chamber view.

Short axis stack

The short axis stack is aligned in diastole. The first layer should be located inside the left atrium and the last layer outside the left ventricle. The short axis stack is aligned such that a connection between the AV grooves (white line) can be created at the height of the mitral and tricuspid valve. The remaining short axes cover the entire left and right ventricle up to the apex of the heart and are parallel to the initial short axis.

Right ventricular 2-chamber view

In addition, a longitudinal section through the right ventricle should be made.
Late gadolinium enhancement module *

*prior to commencing every study, details are adjusted according to current knowledge, during each study the parameters are kept constant; furthermore, manufacturer-independent "generic" protocols are generated that define the details of the sequences.

Figure 6: Late gadolinium enhancement module

- Wait 10 minutes after injecting the contrast agent.
- The contrast agent to be used (volume and type depending on relaxivity) are defined specifically for each study. The injection rate (flow rate) is also adjusted accordingly.
- Ti-Scout to determine the zero-crossing point of the signal of the healthy myocardium. Position the Ti-Scout in the mid-ventricular short axis.
- Recording of the late gadolinium enhancement images of all short axes, of the 2 left and right ventricular 2-chamber views, of the 3-chamber view and of the 4-chamber view (in doing so, the alignment should correspond to that of the functional test).

3.4 FOLLOW-UP AND DATA COLLECTION

Evaluation of the MRI images using the respective evaluation software

3.5 PROCEDURE IN CASE OF DEVIATIONS

None
4 LITERATURE AND REFERENCES

Kramer CM et al. Journal of Cardiovascular Magnetic Resonance 2013, 15:91

5 CHANGE

Change compared to the previous version

<table>
<thead>
<tr>
<th>Section</th>
<th>Description of the change to the previous version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>....</td>
<td></td>
</tr>
</tbody>
</table>

6 PERSONS INVOLVED

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Involvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD Dr. Christina Dösch</td>
<td>Initial author</td>
<td>Creation of SOP</td>
</tr>
<tr>
<td>Dr. Christian Liebetrau</td>
<td>Author</td>
<td>Technical review</td>
</tr>
<tr>
<td>Prof. Dr. Joachim Lotz</td>
<td>Author</td>
<td>Technical review</td>
</tr>
<tr>
<td>PD Dr. Rolf Wachter</td>
<td>Author</td>
<td>Technical review</td>
</tr>
<tr>
<td>Prof. Dr. Jeanette Schulz-Menger</td>
<td>Last author</td>
<td>Technical review</td>
</tr>
</tbody>
</table>
Annexes

7.1 ECRF Module

MRT

<table>
<thead>
<tr>
<th>Examination details</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Was the MRI performed?</td>
</tr>
<tr>
<td>II. Date of examination</td>
</tr>
<tr>
<td>III. Quality level</td>
</tr>
</tbody>
</table>

1. Cine 4-chamber view

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Diameter of the right ventricle</td>
<td>mm</td>
</tr>
<tr>
<td>1.2. Diameter of the right atrium</td>
<td>mm</td>
</tr>
<tr>
<td>1.3. MAPSE</td>
<td>mm</td>
</tr>
<tr>
<td>1.4. TAPSE</td>
<td>mm</td>
</tr>
<tr>
<td>1.5. Maximum left atrial area</td>
<td>cm²</td>
</tr>
<tr>
<td>1.6. Minimum left atrial area</td>
<td>cm²</td>
</tr>
<tr>
<td>1.7. Maximum length of the axis of the left atrium</td>
<td>mm</td>
</tr>
<tr>
<td>1.8. Minimum length of the axis of the left atrium</td>
<td>mm</td>
</tr>
</tbody>
</table>

2. Cine 2-chamber view

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Maximum left atrial area</td>
<td>cm²</td>
</tr>
<tr>
<td>2.2. Minimum left atrial area</td>
<td>cm²</td>
</tr>
<tr>
<td>2.3. Maximum length of the axis of the left atrium</td>
<td>mm</td>
</tr>
<tr>
<td>2.4. Minimum length of the axis of the left atrium</td>
<td>mm</td>
</tr>
</tbody>
</table>
3. Short-axis multislice cine

3.1. Basal septum

| mm |

3.2. Basal lateral wall

| mm |

3.3. Left ventricular end-diastolic diameter (LVEDD)

| mm |

3.4. Left ventricular end-systolic diameter (LVESD)

| mm |

3.5. Left ventricular ejection fraction (LV-EF)

| % |

3.6. Left ventricular end-diastolic volume index (LV-EDVI)

| ml/m² |

3.7. Left ventricular end-systolic volume index (LV-ESVI)

| ml/m² |

3.8. Left ventricular stroke volume index (LV-SVI)

| ml/m² |

3.9. Indexed left ventricular mass (LV mass/body surface)

| g/m² |

3.10. Right ventricular ejection fraction (RV-EF)

| % |

3.11. Right ventricular end-diastolic volume index (RV-EDVI)

| ml/m² |

3.12. Right ventricular end-systolic volume index (RV-ESVI)

| ml/m² |

3.13. Right ventricular stroke volume index (RV-SVI)

| ml/m² |

4. Examination details (Late Gadolinium Enhancement (LGE))

4.1. LGE in AHA 17-segment model infarction-typical

- yes
- no
- unknown
- not assessed

The text elements marked with the symbol ** in this SOP are binding. The text elements marked with the symbol * are to be complied with wherever possible.
7.2 LIST OF FIGURES

Figure 1: 2-chamber view .. 10
Figure 2: 4-chamber view ... 10
Figure 3: 3-chamber view ... 10
Figure 4: Short axis stack .. 11
Figure 5: Right ventricular 2-chamber view ... 11
Figure 6: Late gadolinium enhancement module ... 12
DZHK-SOP-K-06

Kardiale Magnetresonanztomographie

Version: V1.0
Gültig ab: 01.09.2014

Ersetzte Version:
Vom:

Änderungshinweis:

<table>
<thead>
<tr>
<th>Fachlicher Autor</th>
<th>Fachlicher Review</th>
<th>Zustimmung Bereitschaftsleitung</th>
<th>Freigabe DZHK</th>
</tr>
</thead>
</table>
| C. Dösch (Mannheim)
C. Liebetrau (Bad Nauheim)
J. Lotz (Göttingen)
R. Wachter (Göttingen)
J. Schulz-Menger (Berlin) | | Matthias Nauck
Thomas Eschenhagen | |

Datum
26.08.2014
26.08.2014
26.08.2014

Unterschrift

[Signature]

The text elements marked with the symbol ** in this SOP are binding. The text elements marked with the symbol * are to be complied with wherever possible.
DZHK-SOP-K-06

Kardiale Magnetresonanztomographie

Version: V1.0
Gültig ab: 01.09.2014

Ersetzte Version:
Vom:

Änderungshinweis:

<table>
<thead>
<tr>
<th>Fachlicher Autor</th>
<th>Fachlicher Review</th>
<th>Zustimmung Berufsleitung</th>
<th>Freigabe DZHK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Dösch (Mannheim)</td>
<td>C. Liebetrau (Bad Nauheim)</td>
<td>J. Loiz (Göttingen)</td>
<td>Matthias Nauck</td>
</tr>
<tr>
<td>R. Wachter (Göttingen)</td>
<td>J. Schulz-Menger (Berlin)</td>
<td></td>
<td>Thomas Eschenhagen</td>
</tr>
<tr>
<td>Datum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.08.2014</td>
<td>26.08.2014</td>
<td></td>
</tr>
</tbody>
</table>

The text elements marked with the symbol ** in this SOP are binding. The text elements marked with the symbol * are to be complied with wherever possible.